Newton ' s laws , concepts of momentum , energy , angular momentum , rigid body motion , and non - inertial systems 牛頓定律,動量的概念,能量,角動量,剛體運動,以及非慣性系。
According to the principle of the rigid body motioning , the theory composed the bending by the two principal axis and the rotation around the shear center to a rotation around a new point 此理論把構(gòu)件繞兩軸的彎曲平動和繞剪心的翹曲轉(zhuǎn)動依剛體轉(zhuǎn)動原理合成為繞新一點的轉(zhuǎn)動,從而使桿件的空間穩(wěn)定分析更加直觀、簡便。
We give a brief but systematic introduction to differentiable geometry and lie group , lie algebra . rigid body motion expressed with the notations from these theories is also introduced . they are the theoretical bases of the subsequent research contents 2 、基本成體系地介紹了微分幾何中的李群、李代數(shù)理論,并分析其表達剛體運動的作用,為本文的研究打下基礎(chǔ)。
On the one hand , the linear interpolation in ( x , y ) plane makes it easy to separate the three - dimensional null subspace corresponding to rigid body motions , hence what is left to do is just to compute the inverse of a symmetric definite submatrix numerically . in this way the numerical difficulty in computing general inverse can be avoided 在物理坐標(biāo)系中的線性插值函數(shù)便于將三個剛體模式分離出來,從而只需計算對稱正定子陣的逆,避免了求廣義逆的數(shù)值困難;在參考坐標(biāo)系中的高階插值函數(shù)則可保持原平面彈性單元的列式方式。